Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Microbiol Spectr ; : e0296522, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2264560

ABSTRACT

To understand the changes of resistance in clinically commonly encountered fungi, we used the Antimicrobial Testing Leadership and Surveillance (ATLAS) database to explore in vitro antifungal susceptibilities against clinically important isolates of Aspergillus and Candida species (collected from intrapulmonary and sterile body areas, respectively). We applied the CLSI antifungal 2020 and the EUCAST antifungal 2020 guidelines. From 2017 to 2020, isolates of intrapulmonary Aspergillus fumigatus (n = 660), Aspergillus niger (n = 107), Aspergillus flavus (n = 96), Aspergillus terreus (n = 40), and Aspergillus nidulans species complex (n = 26) and sterile site-originated isolates of Candida albicans (n = 1,810), Candida glabrata (n = 894), Candida krusei (n = 120), Candida dubliniensis (n = 107), Candida lusitaniae (n = 82), Candida guilliermondii (n = 28), and Candida auris (n = 7) were enrolled in this study. Using the EUCAST 2020 breakpoints, it was demonstrated that amphotericin B and posaconazole displayed poor in vitro susceptibility rates against A. fumigatus isolates (<50% and 18.9%, respectively). In contrast, isavuconazole and itraconazole showed high in vitro potency against most Aspergillus isolates (>92%). Most intrapulmonary Aspergillus isolates exhibited MICs of ≤0.06 µg/mL to anidulafungin. Furthermore, intrapulmonary A. fumigatus isolates collected from Italy and the United Kingdom exhibited lower in vitro susceptibility to isavuconazole (72.2% and 69%, respectively) than those in the remaining ATLAS participant countries (>85%). Higher isavuconazole MIC90s against C. auris and C. guilliermondii (1 and 4 µg/mL, respectively) were observed compared to the other five Candida species. Despite the aforementioned MICs and susceptibilities against fungi, research needs to consider the pharmacokinetic (PK) profiles, pharmacodynamic (PD) parameters, and clinical treatment experience with antifungals against specific Aspergillus species. IMPORTANCE In addition to monitoring the antifungal susceptibilities of clinically important fungi, reviewing the PK/PD indices and the clinical therapy experience of antifungals under evaluation are important to guide an appropriate antifungal prescription. The efficacies of liposomal amphotericin B complex and anidulafungin for the treatment of pulmonary aspergillosis caused by different Aspergillus species need to be periodically evaluated in the future.

2.
Int J Antimicrob Agents ; 56(2): 106024, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-343541

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global health threat. Although most patients with COVID-19 manifest fever and respiratory tract symptoms, SARS-CoV-2 infection may also involve other organs/systems and present with extra-respiratory manifestations, including cardiac, gastrointestinal, hepatic, renal, neurological, olfactory, gustatory, ocular, cutaneous and haematological symptoms. Occasionally, these extra-respiratory symptoms/signs represent the initial presentation of SARS-CoV-2 infection, prior to fever or respiratory manifestations. Therefore, this comprehensive review of the extra-respiratory manifestations of COVID-19 is intended to help clinicians better understand the range of clinical presentations associated with SARS-CoV-2 infection, allowing the consideration of COVID-19 in differential diagnoses. A screening test for SARS-CoV-2 should be performed when patients have these extra-respiratory manifestations. In addition, clinicians should be alerted to the adverse effects of anti-SARS-CoV-2 agents that can mimic the extra-respiratory manifestations of COVID-19. Moreover, some extra-respiratory manifestations, such as ocular and gastrointestinal involvement, may be caused by direct invasion of SARS-CoV-2. Therefore, protective measures should be taken while managing the associated clinical specimens. Finally, several extra-respiratory manifestations, such as cardiac involvement, acute kidney injury, coagulation disorders and thrombotic complications, could be associated with a poor prognosis.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/physiopathology , Pneumonia, Viral/physiopathology , COVID-19 , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
3.
J Microbiol Immunol Infect ; 53(3): 436-443, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-31183

ABSTRACT

An outbreak related to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China in December 2019. An extremely high potential for dissemination resulted in the global coronavirus disease 2019 (COVID-19) pandemic in 2020. Despite the worsening trends of COVID-19, no drugs are validated to have significant efficacy in clinical treatment of COVID-19 patients in large-scale studies. Remdesivir is considered the most promising antiviral agent; it works by inhibiting the activity of RNA-dependent RNA polymerase (RdRp). A large-scale study investigating the clinical efficacy of remdesivir (200 mg on day 1, followed by 100 mg once daily) is on-going. The other excellent anti-influenza RdRp inhibitor favipiravir is also being clinically evaluated for its efficacy in COVID-19 patients. The protease inhibitor lopinavir/ritonavir (LPV/RTV) alone is not shown to provide better antiviral efficacy than standard care. However, the regimen of LPV/RTV plus ribavirin was shown to be effective against SARS-CoV in vitro. Another promising alternative is hydroxychloroquine (200 mg thrice daily) plus azithromycin (500 mg on day 1, followed by 250 mg once daily on day 2-5), which showed excellent clinical efficacy on Chinese COVID-19 patients and anti-SARS-CoV-2 potency in vitro. The roles of teicoplanin (which inhibits the viral genome exposure in cytoplasm) and monoclonal and polyclonal antibodies in the treatment of SARS-CoV-2 are under investigation. Avoiding the prescription of non-steroidal anti-inflammatory drugs, angiotensin converting enzyme inhibitors, or angiotensin II type I receptor blockers is advised for COVID-19 patients.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Amides/therapeutic use , Azithromycin/therapeutic use , COVID-19 , Coronavirus Infections/therapy , Drug Combinations , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive/methods , Lopinavir/therapeutic use , Pandemics , Pyrazines/therapeutic use , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Ritonavir/therapeutic use , SARS-CoV-2 , Teicoplanin/therapeutic use , COVID-19 Serotherapy
4.
Non-conventional in English | WHO COVID | ID: covidwho-291460

ABSTRACT

Introduction: The coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed since December 2019. It has caused a global pandemic with more than three hundred thousand case fatalities. However, apart from supportive care by respirators, no standard medical therapy is validated.Areas covered: This paper presents old drugs with potential in vitro efficacy against SARS-CoV-2. The in vitro database, adverse effects, and potential toxicities of these drugs are reviewed regarding their feasibility of clinical prescription for the treatment of patients with COVID-19. To obtain convincing recommendations, we referred to opinions from the US National Institute of Health regarding drugs repurposed for COVID-19 therapy.Expert opinion: Although strong evidence of well-designed randomized controlled studies regarding COVID-19 therapy is presently lacking, remdesivir, teicoplanin, hydroxychloroquine (not in combination with azithromycin), and ivermectin might be effective antiviral drugs and are deemed promising candidates for controlling SARS-CoV-2. In addition, tocilizumab might be considered as the supplementary treatment for COVID-19 patients with cytokine release syndrome. In future, clinical trials regarding a combination of potentially effective drugs against SARS-CoV-2 need to be conducted to establish the optimal regimen for the treatment of patients with moderate-to-severe COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL